Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biology (Basel) ; 12(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979122

RESUMO

Vacuolar processing enzyme (VPE) is a cysteine protease responsible for vacuolar proteins' maturation and regulation of programmed cell death (PCD). Four isoforms of Arabidopsis thaliana VPEs were identified previously, but only the functions of ßVPE, γVPE, and δVPE were determined. The specific function of a gene is linked to the cis-acting elements in the promoter region. A promoter analysis found repetitive drought-related cis-elements in αVPE, which highlight its potential involvement in drought regulation in A. thaliana. The further co-expression network portraying genes interacting with αVPE substantiated its drought-regulation-related function. Expression of αVPE was upregulated after drought treatment in A. thaliana. To confirm the role of αVPE, a loss of function study revealed that αVPE knockout mutants remained green compared with WT after drought treatment. The mutants had reduced proline activity, decreased sucrose content, and lower MDA content, but increased photosynthetic pigments, indicating that αVPE negatively regulates drought tolerance in A. thaliana. Taken together, our findings serve as important evidence of the involvement of αVPE in modulating drought tolerance in A. thaliana.

2.
Biology (Basel) ; 11(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36358305

RESUMO

The Harvey rat sarcoma (HRAS) proto-oncogene belongs to the RAS family and is one of the pathogenic genes that cause cancer. Deleterious nsSNPs might have adverse consequences at the protein level. This study aimed to investigate deleterious nsSNPs in the HRAS gene in predicting structural alterations associated with mutants that disrupt normal protein-protein interactions. Functional and structural analysis was employed in analyzing the HRAS nsSNPs. Putative post-translational modification sites and the changes in protein-protein interactions, which included a variety of signal cascades, were also investigated. Five different bioinformatics tools predicted 33 nsSNPs as "pathogenic" or "harmful". Stability analysis predicted rs1554885139, rs770492627, rs1589792804, rs730880460, rs104894227, rs104894227, and rs121917759 as unstable. Protein-protein interaction analysis revealed that HRAS has a hub connecting three clusters consisting of 11 proteins, and changes in HRAS might cause signal cascades to dissociate. Furthermore, Kaplan-Meier bioinformatics analyses indicated that the HRAS gene deregulation affected the overall survival rate of patients with breast cancer, leading to prognostic significance. Thus, based on these analyses, our study suggests that the reported nsSNPs of HRAS may serve as potential targets for different proteomic studies, diagnoses, and therapeutic interventions focusing on cancer.

3.
Life (Basel) ; 12(7)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35888106

RESUMO

Dysregulation of fibroblast growth factors is linked to the pathogenesis of bladder cancer. The role of FGF1 and FGF3 is evident in bladder cancer; however, the role of FGF4 is vague. Despite being reported that FGF4 interacts with FGF1 and FGF3 in MAPK pathways, its pathogenesis and mechanism of action are yet to be elucidated. Therefore, this study aimed to elucidate pathogenic nsSNPs and their role in the prognosis of bladder cancer by employing in-silico analysis. The nsSNPs of FGF4 were retrieved from the NCBI database. Different in silico tools, PROVEAN, SIFT, PolyPhen-2, SNPs&GO, and PhD-SNP, were used for predicting the pathogenicity of the nsSNPs. Twenty-seven nsSNPs were identified as "damaging", and further stability analysis using I-Mutant 2.0 and MUPro indicated 22 nsSNPs to cause decreased stability (DDG scores < −0.5). Conservation analysis predicted that Q97K, G106V, N164S, and N167S were highly conserved and exposed. Biophysical characterisation indicated these nsSNPs were not tolerated, and protein-protein interaction analysis showed their involvement in the GFR-MAPK signalling pathway. Furthermore, Kaplan Meier bioinformatics analyses indicated that the FGF4 gene deregulation affected the overall survival rate of patients with bladder cancer, leading to prognostic significance. Thus, based on these analyses, our study suggests that the reported nsSNPs of FGF4 may serve as potential targets for diagnoses and therapeutic interventions focusing on bladder cancer.

4.
Microbiol Resour Announc ; 11(4): e0111721, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35377179

RESUMO

The Gram-negative marine bioluminescent bacterium Aliivibrio fischeri is commonly used as a bioreporter in drug inhibition studies. Its bioluminescence is regulated by the gene expression of the luxI-luxR quorum-sensing system. Here, we report the draft genome sequence of A. fischeri ATCC 7744, including identification of the putative lux operon.

5.
Sci Rep ; 11(1): 24206, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921182

RESUMO

MYB proteins are highly conserved DNA-binding domains (DBD) and mutations in MYB oncoproteins have been reported to cause aberrant and augmented cancer progression. Identification of MYB molecular biomarkers predictive of cancer progression can be used for improving cancer management. To address this, a biomarker discovery pipeline was employed in investigating deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) in predicting damaging and potential alterations on the properties of proteins. The nsSNP of the MYB family; MYB, MYBL1, and MYBL2 was extracted from the NCBI database. Five in silico tools (PROVEAN, SIFT, PolyPhen-2, SNPs&GO and PhD-SNP) were utilized to investigate the outcomes of nsSNPs. A total of 45 nsSNPs were predicted as high-risk and damaging, and were subjected to PMut and I-Mutant 2.0 for protein stability analysis. This resulted in 32 nsSNPs with decreased stability with a DDG score lower than - 0.5, indicating damaging effect. G111S, N183S, G122S, and S178C located within the helix-turn-helix (HTH) domain were predicted to be conserved, further posttranslational modifications and 3-D protein analysis indicated these nsSNPs to shift DNA-binding specificity of the protein thus altering the protein function. Findings from this study would help in the field of pharmacogenomic and cancer therapy towards better intervention and management of cancer.


Assuntos
Modelos Moleculares , Neoplasias , Proteínas Proto-Oncogênicas c-myb , Simulação por Computador , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-myb/química , Proteínas Proto-Oncogênicas c-myb/genética
6.
Sci Rep ; 11(1): 20824, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675255

RESUMO

Antimicrobial resistance remains one of the most challenging issues that threatens the health of people around the world. Plant-derived natural compounds have received considerable attention for their potential role to mitigate antibiotic resistance. This study was carried out to assess the antimicrobial activity and mode of action of a monoterpene, 1,8-cineol (CN) against carbapenemase-producing Klebsiella pneumoniae (KPC-KP). Results showed that resazurin microplate assay and time-kill analysis revealed bactericidal effects of CN at 28.83 mg/mL. Zeta potential showed that CN increased the surface charge of bacteria and an increase of outer membrane permeability was also detected. CN was able to cause leakage of proteins and nucleic acids in KPC-KP cells upon exposure to CN and ethidium bromide influx/efflux experiment showed the uptake of ethidium bromide into the cell; this was attributed to membrane damage. CN was also found to induce oxidative stress in CN-treated KPC-KP cells through generation of reactive oxygen species which initiated lipid peroxidation and thus damaging the bacterial cell membrane. Scanning and transmission electron microscopies further confirmed the disruption of bacterial cell membrane and loss of intracellular materials. In this study, we demonstrated that CN induced oxidative stress and membrane damage resulting in KPC-KP cell death.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Eucaliptol/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , beta-Lactamases/metabolismo , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/metabolismo , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos
7.
J Pharm Anal ; 11(2): 210-219, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34012697

RESUMO

Mining of plant-derived antimicrobials is the major focus at current to counter antibiotic resistance. This study was conducted to characterize the antimicrobial activity and mode of action of linalyl anthranilate (LNA) against carbapenemase-producing Klebsiella pneumoniae (KPC-KP). LNA alone exhibited bactericidal activity at 2.5% (V/V), and in combination with meropenem (MPM) at 1.25% (V/V). Comparative proteomic analysis showed a significant reduction in the number of cytoplasmic and membrane proteins, indicating membrane damage in LNA-treated KPC-KP cells. Up-regulation of oxidative stress regulator proteins and down-regulation of oxidative stress-sensitive proteins indicated oxidative stress. Zeta potential measurement and outer membrane permeability assay revealed that LNA increases both bacterial surface charge and membrane permeability. Ethidium bromide influx/efflux assay showed increased uptake of ethidium bromide in LNA-treated cells, inferring membrane damage. Furthermore, intracellular leakage of nucleic acid and proteins was detected upon LNA treatment. Scanning and transmission electron microscopies again revealed the breakage of bacterial membrane and loss of intracellular materials. LNA was found to induce oxidative stress by generating reactive oxygen species (ROS) that initiate lipid peroxidation and damage the bacterial membrane. In conclusion, LNA generates ROS, initiates lipid peroxidation, and damages the bacterial membrane, resulting in intracellular leakage and eventually killing the KPC-KP cells.

8.
Mar Drugs ; 19(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925365

RESUMO

Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.


Assuntos
Anti-Infecciosos/farmacologia , Doenças Transmissíveis/veterinária , Doenças dos Peixes/tratamento farmacológico , Poríferos/metabolismo , Drogas Veterinárias/farmacologia , Animais , Anti-Infecciosos/isolamento & purificação , Aquicultura , Doenças Transmissíveis/tratamento farmacológico , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Drogas Veterinárias/isolamento & purificação
9.
Microbiol Resour Announc ; 9(21)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439681

RESUMO

A type strain of Lactarius deliciosus was obtained from the CBS-KNAW culture collection. The mycelium was cultured using potato dextrose agar, and the extracted genomic DNA was subjected to PacBio genome sequencing. Upon assembly and annotation, the genome size was estimated to be 54 Mbp, with 12,753 genes.

10.
Nutrients ; 11(5)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121870

RESUMO

Gene-environment (G × E) interactions involving job stress and mental health on risk factors of cardiovascular disease (CVD) are minimally explored. This study examined the association and G × E interaction effects of vascular endothelial growth factor receptor-2 (VEGFR-2) gene polymorphisms (rs1870377, rs2071559) on cardiometabolic risk in Chinese Malaysian adults. Questionnaires: Job Stress Scale (JSS); Depression, Anxiety, and Stress Scale (DASS-21); and Rhode Island Stress and Coping Inventory (RISCI) were used to measure job stress, mental health, and coping with perceived stress. Cardiometabolic risk parameters were evaluated in plasma and genotyping analysis was performed by real-time polymerase chain reaction. The subjects were 127 Chinese Malaysian adults. The allele frequencies for rs1870377 (A allele and T allele) and rs2071557 (A allele and T allele) polymorphisms were 0.48 and 0.52, and 0.37 and 0.63, respectively. Significant correlations include scores from JSS dimensions with blood glucose (BG) (p = 0.025-0.045), DASS-21 dimensions with blood pressure, BMI, and uric acid (p = 0.029-0.047), and RISCI with blood pressure and BG (p = 0.016-0.049). Significant G × E interactions were obtained for: rs1870377 with stress on total cholesterol (p = 0.035), low density lipoprotein cholesterol (p = 0.019), and apolipoprotein B100 (p = 0.004); and rs2071559 with anxiety on blood pressure (p = 0.006-0.045). The significant G × E interactions prompt actions for managing stress and anxiety for the prevention of CVD.


Assuntos
Povo Asiático/genética , Doenças Cardiovasculares/genética , Saúde Mental/estatística & dados numéricos , Polimorfismo de Nucleotídeo Único/genética , Estresse Psicológico/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Adulto , Idoso , Doenças Cardiovasculares/epidemiologia , Feminino , Predisposição Genética para Doença , Humanos , Malásia , Masculino , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/genética , Pessoa de Meia-Idade , Fatores de Risco , Estresse Psicológico/epidemiologia
11.
Antioxidants (Basel) ; 8(4)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986936

RESUMO

The risk of macular degeneration can be reduced through the consumption of antioxidant-rich foods, supplements, and nutraceutical formulas. This review focuses on the antioxidants, vitamins, and minerals that have been reported for reducing the risk of macular degeneration and other eye-related diseases. Antioxidants including anthocyanins, carotenoids, flavonoids, and vitamins have been shown to reduce the risk of eye-related diseases. Anthocyanins extracted from berries are powerful antioxidants. Cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin are anthocyanin aglycones detected in berries, currants, and other colored fruits and vegetables. ß-Carotene, as well as xanthophyll lutein and zeaxanthin, have been reported to reduce the risk of macular degeneration. Flavonoids from plants help in the prevention of eye-related diseases through anti-inflammatory mechanisms. A combination of these antioxidants, vitamins, and minerals possess a synergistic effect on the prevention or risk reduction of macular degeneration. Formulas have been developed as dietary supplements to cater to the high demand from consumers and patients with eye problems. Many of the formulated dietary supplements that are sold in the market have been clinically proven for their efficacy to treat eye diseases. Although the bioactivities in the supplement capsules or tablets have been scientifically established for reducing risks of several diseases, which include macular degeneration and other eye-related diseases, knowledge on the right dosage, efficacy, and bioavailability of antioxidants, vitamins, and minerals is important for consumers. The information may help them make the best decision in choosing the right dietary supplements and nutraceuticals following the evidence-based recommended dosages and reference intakes for improving general health and preventing eye-related diseases. This review covers the potential causal factors involved in eye diseases, clinically proven treatments, and controversial findings on the antioxidants in the prevention of macular degeneration. Future studies should consider multiethnic and multicenter trials for eliminating potential bias in research.

12.
Molecules ; 22(11)2017 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-29113046

RESUMO

Combinatory therapies have been commonly applied in the clinical setting to tackle multi-drug resistant bacterial infections and these have frequently proven to be effective. Specifically, combinatory therapies resulting in synergistic interactions between antibiotics and adjuvant have been the main focus due to their effectiveness, sidelining the effects of additivity, which also lowers the minimal effective dosage of either antimicrobial agent. Thus, this study was undertaken to look at the effects of additivity between essential oils and antibiotic, via the use of cinnamon bark essential oil (CBO) and meropenem as a model for additivity. Comparisons between synergistic and additive interaction of CBO were performed in terms of the ability of CBO to disrupt bacterial membrane, via zeta potential measurement, outer membrane permeability assay and scanning electron microscopy. It has been found that the additivity interaction between CBO and meropenem showed similar membrane disruption ability when compared to those synergistic combinations which was previously reported. Hence, results based on our studies strongly suggest that additive interaction acts on a par with synergistic interaction. Therefore, further investigation in additive interaction between antibiotics and adjuvant should be performed for a more in depth understanding of the mechanism and the impacts of such interaction.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/metabolismo , Óleos Voláteis/farmacologia , Tienamicinas/agonistas , Tienamicinas/farmacologia , Membrana Celular/ultraestrutura , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Infecções por Klebsiella/metabolismo , Klebsiella pneumoniae/ultraestrutura , Meropeném , Óleos Voláteis/química , Tienamicinas/química
13.
Electron. j. biotechnol ; 30: 64-70, nov. 2017. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1021461

RESUMO

Background: The development of a potential single culture that can co-produce hydrogen and ethanol is beneficial for industrial application. Strain improvement via molecular approach was proposed on hydrogen and ethanol co-producing bacterium, Escherichia coli SS1. Thus, the effect of additional copy of native hydrogenase gene hybC on hydrogen and ethanol co-production by E. coli SS1 was investigated. Results: Both E. coli SS1 and the recombinant hybC were subjected to fermentation using 10 g/L of glycerol at initial pH 7.5. Recombinant hybC had about 2-fold higher cell growth, 5.2-fold higher glycerol consumption rate and 3-fold higher ethanol productivity in comparison to wild-type SS1. Nevertheless, wild-type SS1 reported hydrogen yield of 0.57 mol/mol glycerol and ethanol yield of 0.88 mol/mol glycerol, which were 4- and 1.4-fold higher in comparison to recombinant hybC. Glucose fermentation was also conducted for comparison study. The performance of wild-type SS1 and recombinant hybC showed relatively similar results during glucose fermentation. Additional copy of hybC gene could manipulate the glycerol metabolic pathway of E. coli SS1 under slightly alkaline condition. Conclusions: HybC could improve glycerol consumption rate and ethanol productivity of E. coli despite lower hydrogen and ethanol yields. Higher glycerol consumption rate of recombinant hybC could be an advantage for bioconversion of glycerol into biofuels. This study could serve as a useful guidance for dissecting the role of hydrogenase in glycerol metabolism and future development of effective strain for biofuels production.


Assuntos
Etanol/metabolismo , Escherichia coli/metabolismo , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Recombinação Genética , Biodegradação Ambiental , Meios de Cultura , Escherichia coli/enzimologia , Alcalinização , Fermentação , Glucose/metabolismo , Glicerol/metabolismo , Hidrogenase/genética
14.
Nutrients ; 9(8)2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28792482

RESUMO

Gene-diet interaction using a multifactorial approach is preferred to study the multiple risk factors of cardiovascular disease (CVD). This study examined the association and gene-diet interaction effects of the angiotensin II type 1 receptor (AGTR1) gene (rs5186), and type 2 receptor (AGTR2) gene (rs1403543) polymorphisms on metabolic risk factors of CVD in Malaysian adults. CVD parameters (BMI, blood pressure, glycated hemoglobin, total cholesterol (TC), triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), and TC/HDL-C ratio), and constructed dietary patterns "vegetables, fruits, and soy diet" (VFSD), and "rice, egg, and fish diet" (REFD) were obtained from previous studies. Genotyping analysis was performed by real-time PCR using Taqman probes. The subjects were 507 adults (151 Malays; 179 Chinese; and 177 Indians). Significant genetic associations were obtained on blood lipids for rs5186 in Malays and Chinese, and rs1403543 in Chinese females. The significant gene-diet interaction effects after adjusting for potential confounders were: rs5186 × VFSD on blood pressure in Malays (p = 0.016), and in Chinese on blood lipids for rs5186 × REFD (p = 0.009-0.023), and rs1403543 × VFSD in female subjects (p = 0.001-0.011). Malays and Chinese showed higher risk for blood pressure and/or lipids involving rs5186 and rs1403543 SNPs together with gene-diet interactions, but not Indians.


Assuntos
Doenças Cardiovasculares/etiologia , Dieta , Doenças Metabólicas/genética , Polimorfismo Genético , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/genética , Adulto , Doenças Cardiovasculares/genética , Feminino , Predisposição Genética para Doença , Humanos , Malásia , Masculino , Pessoa de Meia-Idade , Fatores de Risco
15.
Electron. j. biotechnol ; 26: 27-32, Mar. 2017. tab, ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1009654

RESUMO

Background: An effective single culture with high glycerol consumption and hydrogen and ethanol coproduction yield is still in demand. A locally isolated glycerol-consuming Escherichia coli SS1 was found to produce lower hydrogen levels under optimized ethanol production conditions. Molecular approach was proposed to improve the hydrogen yield of E. coli SS1 while maintaining the ethanol yield, particularly in acidic conditions. Therefore, the effect of an additional copy of the native hydrogenase gene hycE and recombinant clostridial hydrogenase gene hydA on hydrogen production by E. coli SS1 at low pH was investigated. Results: Recombinant E. coli with an additional copy of hycE or clostridial hydA was used for fermentation using 10 g/L (108.7 mmol/L) of glycerol with an initial pH of 5.8. The recombinant E. coli with hycE and recombinant E. coli with hydA showed 41% and 20% higher hydrogen yield than wild-type SS1 (0.46 ± 0.01 mol/mol glycerol), respectively. The ethanol yield of recombinant E. coli with hycE (0.50 ± 0.02 mol/mol glycerol) was approximately 30% lower than that of wild-type SS1, whereas the ethanol yield of recombinant E. coli with hydA (0.68 ± 0.09 mol/mol glycerol) was comparable to that of wild-type SS1. Conclusions: Insertion of either hycE or hydA can improve the hydrogen yield with an initial pH of 5.8. The recombinant E. coli with hydA could retain ethanol yield despite high hydrogen production, suggesting that clostridial hydA has an advantage over the hycE gene in hydrogen and ethanol coproduction under acidic conditions. This study could serve as a useful guidance for the future development of an effective strain coproducing hydrogen and ethanol.


Assuntos
Etanol/metabolismo , Escherichia coli/metabolismo , Hidrogênio/metabolismo , Biotecnologia , Proteínas Recombinantes , Clostridium/genética , Clostridium/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Fermentação , Glicerol , Concentração de Íons de Hidrogênio , Hidrogenase/genética , Hidrogenase/metabolismo
16.
J Nat Prod ; 79(1): 230-9, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26717050

RESUMO

Eleven new indole alkaloids (1-11) comprising seven aspidofractinine and four eburnane alkaloids, were isolated from the stem-bark extract of Kopsia pauciflora occurring in Malaysian Borneo. The aspidofractinine alkaloids include a ring-contracted, an additional ring-fused, a paucidactine regioisomer, two paucidactine, and one kopsine alkaloid. The structures of several of these alkaloids were also confirmed by X-ray diffraction analyses. The bisindole alkaloids isolated, norpleiomutine and kopsoffinol, showed in vitro growth inhibitory activity against human PC-3, HCT-116, MCF-7, and A549 cells and moderate effects in reversing multidrug-resistance in vincristine-resistant human KB cells.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Apocynaceae/química , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Bornéu , Cristalografia por Raios X , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Alcaloides Indólicos/química , Células KB , Malásia , Conformação Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Casca de Planta/química , Vincristina/farmacologia
17.
BMC Complement Altern Med ; 15: 339, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26415532

RESUMO

BACKGROUND: Three species of seaweeds (Padina tetrastromatica, Caulerpa racemosa and Turbinaria ornata) are widely consumed by Asians as nutraceutical food due to their antioxidant properties. Studies have shown that these seaweeds exhibit bioactivities which include antimicrobial, antiviral, anti-hypertensive and anticoagulant activities. However, investigations into the mechanisms of action pertaining to the cytotoxic activity of the seaweeds are limited. The aim of this study was to determine the antioxidant and cytotoxic activities of whole extracts of P. tetrastromatica, C. racemosa and T. ornata, including the cellular events leading to the apoptotic cell death of the extract treated-MCF-7 cells. Bioassay guided fractionation was carried out and the compounds identified. METHODS: Powdered samples were sequentially extracted for 24 h. Their antioxidant activities were assessed by the DPPH radical, superoxide, nitric oxide and hydroxyl radical scavenging assays. The cytotoxic activity of the extract-treated MCF-7cells was assessed using the MTT assay. The most potent fraction was subjected to bioassay guided fractionation with column chromatography. All the fractions were tested for cytotoxic activity, caspase activity and effect on DNA fragmentation. RESULTS: All three seaweeds showed potent radical scavenging activities in the various assays. The activity of the cellular antioxidant enzymes, superoxide dismutase, catalase and glutathione reductase, in MCF-7 cells, decreased in a time-dependent manner. The partially purified fractions exhibited higher cytotoxic activity, as assessed by the MTT assay, than the whole extracts in the breast adenocarcinoma cell line, MCF-7. LC-MS analysis revealed the presence of bioactive alkaloids such as camptothecin, lycodine and pesudopelletierine. CONCLUSION: Based on the results obtained, all three seaweeds are rich sources of enzymatic and non-enzymatic antioxidants which could contribute to their reported medicinal benefits.


Assuntos
Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Alga Marinha/química , Anti-Hipertensivos/farmacologia , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Humanos , Células MCF-7 , Oxirredução , Superóxido Dismutase/metabolismo
18.
World J Microbiol Biotechnol ; 31(10): 1475-88, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26185061

RESUMO

The simultaneous production of hydrogen and ethanol by microorganisms from waste materials in a bioreactor system would establish cost-effective and time-saving biofuel production. This review aims to present the current status of fermentation processes producing hydrogen accompanied by ethanol as a co-product. We outlined the microbes used and their fundamental pathways for hydrogen and ethanol fermentation. Moreover, we discussed the exploitation of renewable and sustainable waste materials as promising feedstock and the limitations encountered. The low substrate bioconversion rate in hydrogen and ethanol co-production is regarded as the primary constraint towards the development of large scale applications. Thus, microbes with an enhanced capability have been generated via genetic manipulation to diminish the inefficiency of substrate consumption. In this review, other potential approaches to improve the performance of co-production through fermentation were also elaborated. This review will be a useful guide for the future development of hydrogen and ethanol co-production using waste materials.


Assuntos
Reatores Biológicos/microbiologia , Etanol/metabolismo , Hidrogênio/metabolismo , Eliminação de Resíduos/métodos , Biotecnologia/métodos , Fermentação , Engenharia Metabólica/métodos , Redes e Vias Metabólicas
19.
J Nat Prod ; 74(5): 1309-12, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21428274

RESUMO

Three new indole alkaloids (1-3), named grandilodines A-C, and five known ones were obtained from the Malayan Kopsia grandifolia. The structures were established using NMR and MS analyses and, in the case of 1 and 2, were confirmed by X-ray diffraction analyses. Alkaloids 1, 3, and lapidilectine B (8) were found to reverse multidrug resistance in vincristine-resistant KB cells.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Apocynaceae/química , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/farmacologia , Vincristina/farmacologia , Antineoplásicos Fitogênicos/química , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Alcaloides Indólicos/química , Células KB , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...